
www.manaraa.com

Interoperability in Peer Data Management Systems∗

Katja Hose
Faculty of Computer Science

and Automation
TU Ilmenau
Germany

katja.hose@tu-
ilmenau.de

Jana Quasebarth
Faculty of Computer Science

and Automation
TU Ilmenau
Germany

jana.quasebarth@tu-
ilmenau.de

Kai-Uwe Sattler
Faculty of Computer Science

and Automation
TU Ilmenau
Germany

kus@tu-ilmenau.de

ABSTRACT
Interoperability plays an important role for a variety of applica-
tions. One of them are Peer Data Management Systems, where
autonomous data sources (peers) interact with each other based on
semantic mappings between their schemas. The building blocks
that enable interoperability and thus the main challenges in such
systems are mapping representation, query rewriting, and efficient
query processing. While most approaches regard these aspects in
separate this paper presents a comprehensive study of the interac-
tions between these blocks. Our considerations try to provide a
holistic view on semantic interoperability in distributed environ-
ments such as PDMS. We discuss techniques for distributed query
processing and rewriting that consider high-level query operators
such as top-N and skyline. Furthermore, we discuss how to in-
crease efficiency by applying routing indexes and relaxation of re-
sult completeness/correctness.

1. INTRODUCTION
In recent years there has been a lot of research with respect to

semantic data integration. Eventually, Peer Data Management Sys-
tems (PDMS) have attracted attention as they promise to combine
aspects from P2P systems with data integration. PDMS consist of
autonomous peers representing data sources that are semantically
connected via mappings. Each peer is allowed to use its individual
local data schema so that it might be unique in the whole network.
Thus, it is one of the main problems in PDMS to define mappings
between schemas. Several techniques to define such mappings have
been proposed for data integration in general and can be used in
PDMS. The most popular approaches are local-as-view (LAV) and
global-as-view (GAV) [8, 18].

Each peer and its neighborhood in a PDMS can be regarded as
a stand-alone data integration system where the local schema of
the peer is regarded as the global schema in the integration system.
Figure 1 shows an example with highlighted data integration sys-
tems for peers P0, P8, and P10. Because of the overlap, queries
and data can be exchanged between the integration systems.

Peers in PDMS are not only autonomous with respect to local

∗This work was supported by the BMBF under grant 03WKBD2B.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
International Workshop on Semantic Data and Service Integration
(SDSI’07), September 23, 2007, Vienna, Austria..

!

" #

$

%

&

'

(

)

*

!&
!!

Figure 1: Peer Data Management System

data sovereignty but also in the way they participate in the network.
There are no designated peers with special roles. On the contrary,
all peers are equal and able to issue and answer queries. PDMS are
not assumed to be static but have to deal with dynamic behavior:
peers might update their local data and leave/join the network at
any time. As PDMS are built upon unstructured P2P systems of
autonomous peers, we should not assume the existence of a cen-
tral instance or any other kind of global knowledge. Thus, query
processing and especially query optimization has to take place in a
completely decentralized fashion with the only help of knowledge
that is available locally at each peer.

Although several systems propose a variety of techniques and
algorithms for query rewriting, most of them simply disregard
lessons learned from distributed query processing in P2P networks.
Thus, although there is no global knowledge peers must neverthe-
less try to minimize query execution costs. One possibility to re-
duce network load and consequently costs is to reduce the number
of peers that the query is forwarded to. In most PDMS peers only
prune neighboring peers from consideration if the query cannot
be rewritten into the schema of the neighbor (schema-level prun-
ing). However, additional peers can be pruned by using routing
indexes [4] (data-level pruning). Doing so each peer holds infor-
mation about the data that is provided by its neighbors. Based on
that information a peer can decide whether a neighbor may con-
tribute to the result of a given query. If not, the peer does not need
to be involved in processing the query.

In P2P systems retrieving all results for a given query might end
up in a huge result set with a lot of records that the user does not
need. Thus, applying a ranking function and limiting the size of the
result set not only reduces the number of needless result records but
may also help to reduce execution costs. Representatives for the
class of rank-aware queries that we consider in this paper are top-
N and skyline queries [3]. The additional application of relaxation
[14] might reduce execution costs even further.

In this paper, we present an overview of SmurfPDMS [9, 13] in
that we consider all aspects mentioned above. In contrast to other
PDMS peers in SmurfPDMS apply schema-level pruning as well

www.manaraa.com

as data-level pruning. Furthermore, we consider rank-aware query
operators not only on top of conjunctive queries but as part of the
query that the rewriting process pays attention to. Finally, we also
propose the use of relaxation to further reduce execution costs.

This paper is structured as follows. At first, we review related
work in Section 2. After Section 3 has defined the basic model of
our system, Section 4 discusses some high-level query processing
techniques that work on top of query rewriting. The algorithm that
we use for query rewriting is presented in Section 5. Section 6
presents some results of our evaluation. Finally, Section 7 con-
cludes this paper.

2. RELATED WORK
In this section we briefly discuss some existing approaches for

PDMS. We limit our considerations to the most prominent exam-
ples.

2.1 PDMS
Piazza [7] is a PDMS that aims to combine the two data integra-

tion formalisms LAV and GAV into one system. Data is provided
by the data sources either in XML or RDF-based formats. Queries
are formulated using a fragment of XQuery. Piazza knows two
types of schema mappings: peer descriptions and storage descrip-
tions. The former relate two or more peer schemas (schemas that
peers publish to make their local data accessible for other peers)
whereas the latter relate peer schemas and stored schemas (schemas
of the local data that the peers possess). There are two kinds
of peer descriptions: equality descriptions (Q1(P1) = Q2(P2)
with Q1 and Q2 being conjunctive queries with the same arity
and P1 and P2 being sets of peers) and inclusion descriptions
(Q1(P1) ⊆ Q2(P2)), where equality can always be regarded as
two inclusions.

Queries are given in the form of conjunctive queries. A conjunc-
tive query can be considered as a logical function or rule applied to
the relations of a database. An example according to [19] is:
q(director) :- Movie(title,director,year) &

Oscar(title,year1) & year1 ≥ 1965

q(director) is called the head of the query and its argument
director is its distinguished variable. The distinguished vari-
ables of a query correspond to attributes appearing in the SELECT
clause of a corresponding SQL query. Oscar(title,year1),
Movie(title,director,year), and year1 ≥ 1965 are
atoms in the body of the query. Predicates of the WHERE clause
of an SQL query can be expressed by a comparison operator in
conjunction with either two variables or a pair of one variable and
one constant value, e.g., year1 ≥ 1965. Equality predicates
are represented by multiple occurrences of the same variable in dif-
ferent atoms, e.g., title and year1 in the example given above.
Since atoms in conjunctive queries are connected with logical and
operators unions are expressed by multiple conjunctive queries hav-
ing the same head.

For rewriting such queries Piazza uses two techniques with re-
spect to GAV and LAV mappings: query unfolding and query an-
swering using views. The basic idea of query unfolding in GAV is
to construct a tree of query subgoals and expand each query sub-
goal recursively according to the relevant peer mappings. In the
case of LAV mappings the MiniCon algorithm [6] is used. Both
techniques are combined and applied recursively on the result until
no more rewriting is possible using peer descriptions. Then, the
storage descriptions are used for the final step of reformulation.
The result of this rewriting process is a query on stored relations
only (i.e., relations included in the storage descriptions).

Piazza uses a centralized index – that can be regarded as a sum-
mary of the data stored at the peers. Each participating peer uploads
a summary of its local data to a central instance (index engine)
and refreshes it periodically. Users perform searches by submitting
queries to the index engine (that also knows all peer mappings).
The index consists of objects that contain sets of attribute-value
pairs of the form: d ::= [A1 = v1, A2 = v2, . . . , An = vn]
where A1, . . . , An are attributes and v1, . . . , vn are atomic val-
ues or patterns (with wildcards). Using the peer descriptions re-
lationships between attributes can be derived and queries of the
form q = [B1 = w1, B2 = w2, . . . , Bp = wp] with attributes
B1, . . . Bn and constants w1, . . . , wn can be supported.

In contrast to Piazza, we strictly avoid any kind of central in-
stance that might represent a single point of failure. We argue that
the peers are not willing to share their mappings and thus infor-
mation about their local schema with a central instance that they
cannot control. On the contrary, we assume that peers want to keep
exclusive control over what peers know about their local schemas
and data. Thus, although we can reuse some of the techniques,
we need to apply other concepts since appropriate techniques for
rewriting and query planning in SmurfPDMS have to work in a
completely decentralized manner.

Just like Piazza, SystemP [25] uses both LAV and GAV map-
pings. Likewise, mappings as well as queries are formulated as
conjunctive queries using datalog rules. However, although Sys-
temP adopts the rule-goal-tree approach of [8] – that is also used
by the Piazza system – SystemP implements query rewriting in
a decentralized manner without any kind of global optimization.
For query processing SystemP provides a budget-driven approach,
where peers are assigned budgets for query answering. The main
idea is to prefer peers that potentially contribute a large number of
records to the result. Result cardinalities are estimated using mul-
tidimensional histograms [1] – applying query feedback to keep
them up-to-date.

Using budgets and cardinality estimation, SystemP tries to re-
duce execution costs by trading off result completeness. On the
contrary, our approach applies the idea of routing indexes [4] or
rather distributed data summaries [12]. Doing so our optimization
techniques are not only restricted to trading off result completeness
but may also trade off result quality – neglecting result records ac-
cording to a ranking function which indicates their importance to
the user. Hence, our approach is not limited to only select-project-
join queries but also integrates rank-aware query operators. Con-
sidering such operators for rewriting is another difference to both
Piazza and SystemP.

Another two systems worth mentioning in this context are Hype-
rion [24] and HePToX [2] because of their peculiarities. Hyperion
uses a completely different approach to formulate mappings be-
tween peers. For this purpose, mapping tables [16] are used that list
pairs of corresponding values for data residing on different peers.
Mapping tables represent expert knowledge and are typically cre-
ated by domain specialists. HePToX users define mappings using
a graphical interface drawing a set of visual annotations between
DTDs for the peers’ local XML data. Mapping rules are then de-
rived automatically from these annotations. Mappings are repre-
sented as datalog-like rules adapted to tree structured data. Rewrit-
ing is realized with algorithms related to those used by Piazza.

3. MODEL DEFINITION
Data integration and view-based query rewriting have been in-

vestigated for relational databases and stable systems [6, 26]. The
two general approaches are global-as-view (GAV) and local-as-
view (LAV) [18], both using a mediated global schema to integrate

www.manaraa.com

data from different sources. Queries are formulated in the medi-
ated schema. In GAV each global relation of the mediated schema
is designed as a view over the local data sources. Query process-
ing results in view unfolding or view expansion. As each joining
and leaving of data sources leads to a change of the view defini-
tions, the GAV approach is not applicable to dynamic networks.
On the contrary, in LAV the local data sources are described by
views over the relations of the mediated schema. Dynamics only
affect the view definitions related to one peer. Using the LAV ap-
proach results in the need for query reformulation [6]. Since we
want to provide a general solution applicable to dynamic environ-
ments, we decided to use LAV style mappings for SmurfPDMS.
Consequently, mappings are directed and expressed by views. That
is why in the following we use the two terms mapping and view as
synonyms. However, additionally integrating GAV mappings and
query unfolding would be straightforward.

As native data format for SmurfPDMS we use XML because of
its immense popularity for many applications that exchange data.
Besides, most database systems offer the possibility to export data
in XML format such that also non-XML data sources can partici-
pate and make their data accessible. Based on this assumption this
section presents how queries and mappings between peers are for-
mulated in SmurfPDMS.

Figure 2 illustrates an example network consisting of 7 peers.
The data that the peers share describes artists and their works. Ar-
rows between peers indicate that a mapping between them exists.
The direction of the arrow indicates the direction of the mapping,
e.g., there exists a mapping from P0 to P1 but not vice versa. In
this example, P0 has mappings to all other peers. Thus, this net-
work comes very close to a standard data integration scenario with
a mediator. However, since it is a PDMS queries can be issued at
any peer in the system. Furthermore, peers might leave the network
at any time and peers joining the network do not have to establish
mappings to P0. We will use this network as a running example
throughout this paper and get back to it later.

1

2

3

4

5

0

6

0: art
 artist*
 fullname
 work*
 title
 description
 location
 gallery*
 name
 street
 zip
 town
 paintings
 price

4: artloc
 item*
 title
 artist
 location
 gallname
 town

2: artists
 person*
 name
 birth
 date
 town
 work
 title
 exhibition

1: gallery
 painting*
 title
 description
 location

5: arts
 artist*
 name
 works
 tit
 descr
 town

3: ausstellungen
 galerie*
 titel
 strasse
 plz
 stadt
 exponate
 preis

6: art
kunstwerk*

 bezeichnung
 kuenstler

standort
gebaeude
stadt
eintritt

Figure 2: Example Network

3.1 Mapping/View Definition
Although we are aware that mappings might change – replaced

or improved – over time, we do not yet consider this aspect in our
system. However, the integration of this aspect is straightforward
as long as the replacement or improvement originates from a user
interaction. Future work might consider this aspect and provide
techniques for automatic schema matching [23]. In this context fu-
ture work might also address the consequences of information loss
that originates from incorrect or incomplete mappings. However,
for the time being we assume that mappings are correct and com-
plete.

Figure 3: Mapping Representation with View Definitions

Let us consider a sample LAV mapping that P0 uses to rewrite
queries from its local schema into the schema of P4. Like Pi-
azza [7] we use XQuery-like blocks in our view definitions. A
view definition is well-formed and uses the XML structure corre-
sponding to the schema of the neighboring (target) peer as basis (P4

in our example). Such a definition contains XQuery-like elements
(for, where, and return clauses). The for clause defines a set of con-
text nodes. These are nodes contained in the schema of the source
peer (P0). The where clause contains predicates that describe how
the data is stored at the target peer. For example a predicate
with a constant (“$art/artist/fullname=’Leonardo
da Vinci’”) indicates that the target’s local data is restricted –
in this case to information about Leonardo da Vinci. A join in a
where clause indicates that local structures of the source are stored
in a joined format at the target. Both for and where clauses are
contained in an XML attribute named context.

Figure 3 shows the mapping that P0 uses to rewrite queries
into the schema of P4. The context attribute is assigned to an
XML node item that is part of P4’s local schema. This declares
item as the target context node. For simplicity, we omit the key-
word “for”. In our example the for clause defines the following
source context nodes and symbols: $a in art/artist, $w
in $a/work, $g in art/gallery. The where clause de-
fines the predicate $w/location = $g/name that represents a
join in the schema of P0.

In general, the context attribute is assigned to an XML element
and tags the parent element that contains all elements of the return
clause. However, we do not have an explicit return clause and mark
the insertion of text with braces {. . . } enclosing exported symbols
(paths in the XML document) that refer to the content of the source
context nodes defined in the for clause, e.g., {$w/title}.

Nesting of views is not allowed, i.e., in the descendent axis of
an XML element with a context attribute there must not exist any
other element with a context attribute. Additionally (not shown
in Figure 3), a view definition might contain constraints. For
example, assume that P1 defines a mapping to P0 (Figure 2 shows
more details about the local schemas of P0 and P1). P1 does not
store the name of the artist since it only stores data about works
of Leonardo da Vinci. Thus, a mapping from P1 to P0 (defined
using the local schema of P0 as basis) must contain additional
information about the restriction on works of Leonardo da Vinci.
As a consequence, a constraint attribute would be integrated into
the mapping, e.g.:
<art>

<artist context="$p in gallery/painting">

<fullname constraint="($p)=‘Leonardo da Vinci’" />

<work>...</work>

</artist>

</art>

As a counterpiece to this constraint P0 would have
the following predicate in its view definition to P1:

www.manaraa.com

$art/artist/fullname=‘Leonardo da Vinci’.
In summary, view definitions consist of: literals defining

context nodes ($a), symbols ($a/work), exported sym-
bols ({$w/title}), constants (‘Leonardo da Vinci’),
conditions corresponding to predicates ($w/location =
$g/name), and constraints (($p)=‘Leonardo da Vinci’).

3.2 Query Formulation
Queries in SmurfPDMS are formulated using plan operators

(POPs). POPs can be combined resulting in POP trees that rep-
resent queries. In SmurfPDMS we do not explicitly distinguish be-
tween query plans and queries: the POP tree that is given as input is
assumed to be preoptimized by an external component. However,
integrating such a component is part of our future work. The result
of a query is processed in a bottom-up fashion such that leaf nodes
are computed first. The parent POP uses the output of its child (a
sequence of XML structures) as input. Finally, the root node of the
tree computes its result. This represents the answer to the query
that is output to the user or forwarded to a neighboring peer as an
answer to the query.

There are only a few basic rules that a query must adhere to.
As mentioned above, the POP representation corresponds to a tree
structure, i.e., each POP has exactly one parent POP except the
root node. The number of children depends on the type of the POP.
Leaf nodes of the tree are always select POPs because only these
POPs are allowed to refer directly to the local data of a peer. Thus,
they select the data that all POPs on higher levels operate on. Con-
sequently, they represent a starting point where select expressions
(XPath) are evaluated on the peers’ local data. Table 1 summarizes
the POPs that are currently supported by SmurfPDMS.

POP #children parameters
select/project 1 1 XPath expression

union 2 —
join 2 1 condition

skyline 1 ≥ 2 ranking functions
topn 1 integer n, 1 ranking function

construct 1 1 expression
remote query 1 neighborID

Table 1: List of Algebra Operators
There are only two POPs that require two child POPs: the

union POP, which unifies the two result sets of its child POPs,
and the join POP. The join POP receives two sequences of
XML structures as parameter and joins any two XML structures
that originate from different sets and fulfill the join condition.
All the other POPs may only have one child POP. Since the
select POP is given an XPath expression as input it not only
performs selection but also projection and may also occur as
inner node of a query POP tree. The construct POP is used to
restructure XML data according to the associated expression. For
example, assume the following expression is assigned to a con-
struct POP: <res><artist>{artist/name}</artist>
<painted>{artist/work/title}</painted></res>.
In this example, all XML structures in the input sequence
represent data records about artists (identifiable by their name
artist/name) and their works (artist/work/title).
For each input XML structure the artist’s name and the title of
his/her work is selected and transformed into another structure
with res as outer element, which has two child elements artist
(containing the artist’s name) and painted containing the title of
the artist’s work. The result set of this construct POP contains one
such XML structure for each input element.

SmurfPDMS also supports high-level query operators such as
skyline [3, 14] and top-N [10, 11]. These rank-aware operators are

represented by topn and skyline POPs. Figure 4 shows examples
for both operators. Data records are represented as grey shaded
circles, those belonging to the result set are shaded black. Fig-
ure 4(a) shows the example of a two-dimensional skyline where the
two ranking functions simply state that the attribute values in both
dimensions are to be minimized. However, much more complex
ranking functions – even using multiple attributes – are possible.
Formally, the result of the skyline operator is defined as the set of
records that are not dominated by any other record. One record
dominates another one if its attribute values are at least as good in
all dimensions and better in at least one dimension. This means
that the result set of a skyline contains those records that represent
“good” combinations with respect to the ranking functions. Fig-
ure 4(b) shows an example of a top-N query that queries those
10 (N = 10) records that are closest to the asterisk. Thus, the
corresponding ranking function in this example is defined as the
Euclidean distance to a two-dimensional point in the data space.

M
IN

MIN

(a) Sample Skyline Query

*

(b) Sample Top-N Query

Figure 4: Examples for Rank-Aware Query Operators

In contrast to all other POPs the remote query POP cannot be
used to formulate queries by the user. This POP is only generated
by the rewriting algorithm (Section 5) to denote those query sub-
trees that are forwarded to neighbor peers.

To enable user interaction with the system queries can be issued
in a console window in text format. The following example is
issued at P0 and queries a skyline over galleries that offer many
but cheap paintings:
(skyline ’MIN("gallery/price")’

’MAX("gallery/paintings")’

(select ’art/gallery’)

The upper part of Figure 7(c) shows the correct POP tree
representation.

4. QUERY PROCESSING
The main difference to query processing in P2P systems is that

answers to a query must be routed back the same way as the query.
The reason is that not only the query itself needs to be rewritten but
also the data records of an answer such that finally the initiator re-
ceives a set of records in its local schema. An interesting approach
would be to combine mappings that are used to rewrite the query
on its way from the initiator to its destination (by applying schema
composition techniques). Then, the destination peer could rewrite
the answer records and send them directly to the initiator – or de-
rive a permanent mapping to it. However, investigating possible
solutions remains future work.

In P2P systems there are two basic approaches for processing
queries: data shipping (DS) and query shipping (QS) [17]. In case
all data that is identified as being relevant to a query is sent/shipped
to the initiator and all operators are applied at that side, we are
talking of data shipping. Applying the query shipping approach
the operators are applied at the peers where the data resides on.
Only the data that cannot be processed any further is shipped to
the initiator. It is obvious that the query shipping approach is more

www.manaraa.com

efficient in terms of network load und thus execution costs.
However, query shipping has great difficulties in dynamic envi-

ronments since peers have to wait for the answers of all those peers
that they have forwarded the query to. Not until all these neigh-
bors have answered a peer sends its own answer. In the presence
of dynamic behavior this strategy is problematic since peers have
to wait for a time-out before sending the answer. Consequently, the
user has to wait a long time. In [15] we have proposed an incre-
mental strategy (incremental message shipping, IMS) to overcome
these shortcomings. Peers forward result records as soon as they
are known. Thus, a queried peer is likely to send more than just
one answer message. Consequently, this results in a higher number
of messages but has the advantage that even when peers crash the
answers arrive at the initiator and first results are output to the user
at an early stage.

Whatever strategy is used a peer still needs to identify neighbors
that are likely to provide relevant data to a given query with the help
of local information. In structured (DHT-based) P2P networks –
where data is distributed among peers according to a common rule,
e.g., a hash function – that rule can be used to route queries effi-
ciently to only those peers that contribute to the result. As Smurf-
PDMS assumes an unstructured P2P network to underly a PDMS,
redistributing or replicating data is not possible. On the contrary,
peers have to make routing decisions with the only help of schema
mappings (to the schemas of neighboring peers on schema-level)
and routing indexes (describing the data of a neighbor on instance-
level). However, it is still possible to consider a super peer architec-
ture where only the super peers as a backbone network participate
in a PDMS. Then, super peers make the data of their subordinate
peers accessible to other super peers in the network.

Routing indexes are data summarizing structures that each peer
maintains for its neighbors (one routing index per neighbor). In
their original sense routing indexes [4] are used to index files in
P2P environments based on a set of keywords. Given an indexed
keyword the routing index provides information about how many
files that contain the keyword can be accessed by forwarding the
query to the corresponding neighbor peers. Note that this infor-
mation is not restricted to the data of the neighbor itself but also
subsumes the data that is stored in a distance of several hops but
accessible via the neighbor.

Later works [20] extended this concept to index semi-structured
data. As base structure no longer keyword-hits lists are used but
one-dimensional histograms. Given a range query these histogram
based routing indexes can be used to effectively determine which
neighbors can provide relevant data and which not – enabling data-
level pruning. In [12] we have identified a class of routing indexes
with qualities that make them applicable to rank-aware queries such
as top-N and skyline. In summary, a suitable base structure ful-
fills the following requirements: summarization of records reduc-
ing memory consumption, support of efficient lookups, caption of
attribute correlations, straightforward maintenance and construc-
tion, and applicability to a wide range of query operators. Al-
though in principle any data summarizing structure can be used as
basis for routing indexes and the techniques presented in this paper
can be used with any such structure, we focus on multidimensional
histogram-based structures as they excellently fulfill all these re-
quirements. In accordance with [12] we call this class of routing
indexes Distributed Data Summaries (DDS).

In SmurfPDMS routing indexes are defined on the local schema
and index one or multiple attributes. Since queries are also formu-
lated in the local schema the information provided by the routing
indexes can easily be used by query processing strategies.

4.1 Strategy
Assuming that each peer has only a small number of neighbors

and that for each of these neighbors the peer holds a mapping and
a routing index, each peer reacts the same way upon receiving a
query. That reaction adheres to the algorithm sketched in Figure 5.

5

6

7

8

9

3

1
Receiving/Issuing a Query in

the Local Schema

Data-Level Pruning Using
Routing Indexes

optional

Query Decomposition

Query Optimization

Sending Remote Queries

Combining Results

Sending Results

2

4

Local Execution

Schema-Level Pruning and
Query Rewriting

Figure 5: Query Processing in SmurfPDMS

1. Receiving/Issuing a Query and 2. Local Execution. At first,
a query is issued or received in a peer’s local schema. This is al-
ways true since the query’s sender always rewrites the query into
the receiver’s local schema before forwarding the query. Then, the
query is processed locally applying it to the peer’s local data. As
already mentioned in Section 3.2 the query POP tree is processed
in a bottom-up fashion.

3. Data-Level Pruning. After having processed the query locally
a peer needs to identify a set of neighbors to forward the query to.
The simplest set consists of all neighbors and is the starting point
for this step that uses routing indexes to prune neighboring peers
from consideration – performing pruning on data-level. However,
routing indexes are optional. Thus, if there are none available we
can still use the same strategy for query processing and simply go
to step 4. Depending on the top-level operator of the query and the
result records that have already been determined in the last step,
some of the neighbors can be pruned [14]. Especially for range
queries and rank-aware query operators data-level pruning is ex-
tremely useful to reduce costs as the following example shows.

Assume a simple query with a tree of only two levels: at the bot-
tom level is a select operator and at the top level a top-N operator
with a ranking function and a number n. The routing index indi-
cates that only two out of three neighbors provide relevant data that
matches the select expression. This already means that the third
neighbor can be pruned. In the best case the indexes indicate that
none of the remaining neighbors can provide any result record that
could be ranked better than those n result records found in step 2.
In that case the query would not have to be forwarded at all and the
result could already be output to the user. In a less lucky case there
is still the chance that one of the remaining two neighbors can be
pruned.

4. Schema-Level Pruning, Query Rewriting, and 5. Query
Optimization. Due to the fact that some of the neighbors might
have been pruned in the previous step, the overhead for rewriting
queries may be reduced so that only a subset of neighbors and thus
mappings have to be considered. The query operator tree is then

www.manaraa.com

rewritten (Section 5) into a plan that contains remote query POPs
each representing the root nodes of a subquery tree. As subqueries
and original query are combined with union POPs, the result of the
rewriting step still contains the original query with the local result
– attached to the root node of the original query.

6. Query Decomposition and 7. Sending Remote Queries. The
rewritten query operator tree is decomposed into several remote
queries – each rooted by a remote query POP. Until all receiving
peers have answered, the sender needs to remember the complete
query plan. Thus, it is stored into a local cache. Since it is possible
that the rewritten query contains the same subquery multiple times,
a peer needs to identify such subqueries before sending them to the
corresponding neighbor so that the query is sent and processed only
once.

8. Combining and 9. Sending Results. Since a remote query
always has a construct operator as root node that transforms the re-
sults into the schema of the query’s sender, no further adaptions to
the results are necessary (Section 5). The received results are in-
serted into the cached query plan replacing the corresponding sub-
query plans. Now the parent operators take the results as input, use
them to compute their results and propagate them to their parent
POPs and so on. Although this basics hold for any concrete query
processing strategy we have to distinguish between incremental and
non-incremental strategies (QS and IMS). When an answer from a
neighbor is received using a non-incremental strategy, the answer
is stored into the cache. The final result is computed not until the
last queried neighbor has sent its answer. On the contrary, using
an incremental strategy the local result is sent as an answer even
before any queried neighbor has answered. Further messages con-
taining the “new” result records are sent whenever an answer from
a neighbor is received.

4.2 Relaxation
As we have already argued in the introduction relaxing cor-

rectness/completeness requirements may help to reduce execution
costs even more. This is especially true with respect to rank-aware
query operators such as top-N and skylines. The basic concept of
relaxation is the same for both operators. We illustrate the concept
of relaxation using two examples – one for each of the two opera-
tors, details can be looked up in [14].

M
IN

MIN

(a) Relaxed Skyline

*

(b) Relaxed Top-N

Figure 6: Relaxation for Rank-Aware Query Opererators

Figure 6(a) shows the relaxed version of the skyline shown in
Figure 4(a), Figure 6(b) the relaxed version of the top-N query of
Figure 4(b). Now, some of the result records (solid black) represent
not only themselves but also some other records nearby – all those
represented records are located within the gray shaded area.

Given a set D of data objects, a top-N or skyline query T, a
distance function d : D × D → R, and a user-defined maximum
relaxation ε ∈ R, any subset R of D for that

∀t ∈ T(D) ∃r ∈ R : d(t, r) ≤ ε (1)
holds, is called a relaxed top-N /skyline result. Furthermore, if for
r, t ∈ D: d(r, t) ≤ ε holds, r is called a representing record of t.

A representative is the combination of such a representing record
and the region that is represented. Thus, a relaxed top-N /skyline
result can be defined as a set R that contains a representative for
each result record t ∈ T(D). There are usually many R for a data
set D that fulfill the above equation. Furthermore, several records
can be represented by one single representative.

The guarantee that is output to the user for such a result is an
inherent part of any representative. It guarantees that all records
that are represented by the representative are located within the re-
gion that is part of its definition. The maximum distance between
the representing record and any point in the region never exceeds ε
with respect to distance function d.

With respect to distributed query processing step 3 is affected.
In addition to the techniques for data-level pruning a peer tries to
find representatives for the data provided by its neighbors – using
the information provided by the routing indexes [14]. If this is pos-
sible additional neighbors can be pruned. This kind of relaxation
is especially useful when we have to deal with data clusters. Thus,
many records can be represented by only a few representatives but
the user still gets an overview of the data. However, the concept
of relaxation reduces costs at the expense of accuracy. Thus, the
higher the user-defined relaxation ε the lower are the costs but the
higher is the loss of accuracy. In general, that loss can be neglected
and the user can work with the representatives. If not, the user is
free to define an ε of 0, which means that no relaxation is applied.

5. QUERY REWRITING
In this section we sketch the algorithm that we developed to

rewrite queries [22]. Before going into detail let us first review
some existing algorithms for LAV mappings.

5.1 Query Rewriting using Views
There are three main rule-based algorithms for LAV mappings

proposed in literature dealing with conjunctive queries: the Bucket
Algorithm [6], Inverse-Rules [5, 6] and MiniCon [6, 21]. The for-
mer considers the subgoals of a query (the global relations and at-
tributes named in the body and the head of the query), builds a
bucket for each of them, determines which view may be relevant
to a query subgoal, and puts it into the corresponding bucket. To
reformulate the whole query, a Cartesian product of the views in
the buckets is built. This Cartesian product may be rather large
and may as well contain a lot of combinations that would lead to
an empty answer, e.g., because of missing attributes for joins or
conflicting predicates. In order to find rewritings the algorithm per-
forms a query containment test for each candidate, which is the
main disadvantage of the Bucket Algorithm with regard to perfor-
mance.

Inverse-Rules basically inverts the information given by the view
definitions to build rules describing how to get tuples out of the data
sources into the global relations to answer a query. Unfortunately,
data joined locally is separated into the global relations as well. If
there is the same join condition in both query and view, the tuples
have to be recomputed and joined again. To avoid this and to obtain
a more efficient rewriting, the inversed rules have to be unfolded.

The third algorithm, MiniCon, starts like the Bucket Algorithm
and considers the subgoals of a query. For each known view def-
inition it determines which query subgoals are answered. After
finding a partial mapping from the query to the view, the join pred-
icates of the query are considered in order to find out, which addi-
tional set of view subgoals is needed for rewriting the whole query.
This set and the mapping information is called a MiniCon Descrip-
tion (MCD). In a second phase the MCDs are combined and query
rewritings are built. Compared to the Cartesian product of the buck-

www.manaraa.com

ets in the Bucket Algorithm fewer combinations of MCDs have to
be considered. A portion of the work done in the second phase of
the Bucket Algorithm has been shifted into the first phase of build-
ing the MCDs in MiniCon. Thus, views that cannot be combined
because of missing attributes for join conditions are left out at an
early stage. The Bucket Algorithm on the contrary needs to find
every combination such a view is involved in.

The presented algorithms are rule-based and work well with
respect to relational data and conjunctive queries. For Seman-
tic Web applications and data exchange in a wide-spread network
of heterogeneous data sources we believe that XML data rather
than relational data is the better basis to choose. Additionally,
indexes and high-level operators should be integrated to offer an
overview over the data without flooding the network and transform-
ing/transmitting all the data that is available. If we did not consider
operators like top-N and skyline in the rewriting process, peers that
receive the query could not apply the operators to their local data.
Consequently, those peers would have to transform and transmit all
their local data such that the operator can be computed at the initia-
tor. Obviously, this is not desirable and causes unnecessarily high
network traffic and computational load.

As we are considering PDMS there should be no global com-
ponent. Instead, each peer should work on its own local schema
that serves as the mediated schema for each query received at the
peer. Schema mappings are defined as views between a peer and
its neighbors. Within the Piazza project [7] directed views are like-
wise defined between pairs or a small set of peers. Piazza uses
these views in both directions, thus integrating data of heteroge-
neous data sources in a LAV- and a GAV-like manner. By building
a rule-goal-tree views are expanded for a peer relation or MCDs are
built for rewriting the query. A global system catalog is assumed to
provide access to all of the mappings needed for the expansion of a
rule-goal tree node.

SmurfPDMS on the contrary has no global component or global
knowledge at all. The behavior of the system results from the local
interactions of peers. Each peer rewrites queries using the views to
its neighbors only. If a query is received at a peer it is processed
locally, rewritten and parts of the rewritten query are sent to neigh-
bors. Queries and answers are chained through the network.

5.2 Query Rewriting using Subgoal Trees
The algorithm for rewriting queries we propose in this paper ba-

sically combines the Bucket Algorithm [6] with the advantages of
Minicon [6, 21]. It works on operator trees instead of datalog rules
and pays attention to all query operators supported by SmurfPDMS
including rank-aware operators.

Before going into detail we need to discuss how to create sub-
goals from queries and views and how these subgoals are rep-
resented. The subgoal representation is the basis for our modi-
fied bucket algorithm. As SmurfPDMS works on (semi-structured)
XML data rewriting has to deal with nesting and unnesting of ele-
ments or structures. As a consequence, we represent subgoals using
a tree structure. Subgoal trees for views always consist of:
• one root node with: (i) the path to the context node of the

view’s owner (source), and (ii) the path to the context node
of the target peer,
• multiple inner nodes with: (i) the name of an element of the

owner’s schema or (ii) the name of an element of the target
peer’s schema,
• leaf nodes with: (i) the name of a text node of the owner’s

schema, (ii) the name of a text node of the target peer’s
schema or a constant that corresponds to the target peer’s
node, and (iii) optional predicates.

This structure helps us find a symbol mapping. The root node of a
subgoal tree contains the name or path of the XML element, which
contains additional elements and text nodes. This context element
is comparable to literals or relation names in the relational case.
Inner subgoal tree nodes show the nesting of elements at the owner
or at the target. The names of text nodes (exported symbols) and
predicates or constants are always contained in leaf nodes. As an
example, consider the view definition of Figure 3 that we have used
in Section 3.1. The corresponding subgoal trees are illustrated in
Figure 7(a). In order to compare a view to a query the query has
to be transformed into a subgoal tree representation as well. It is
basically constructed the same – the main difference is that in case
of queries there are no target elements that need to be considered.
Figures 7(b) and 7(c) show examples of queries and their subgoal
trees.

A view subgoal may be useful for answering a query subgoal, if
a mapping can be found

• for the query subgoal’s context node path,
• for each element name or path that occurs in the query sub-

goal,
• especially for each exported symbol contained in the query

subgoal, i.e., for each text node expected as result, and
• for each predicate of the query subgoal.

Checking all these conditions, we can decide whether a view sub-
goal fulfills a query subgoal and finally prune views and thus peers
on schema-level. By combining view subgoals the query can be
answered. In principle, the rewriting algorithm that we propose in
this paper works in 9 steps:

1. receiving a query plan consisting of POPs
2. preprocessing
3. creating buckets
4. sorting view subgoals into buckets
5. creating combinations of buckets
6. creating query snippets
7. optimizing query snippets
8. optimizing subgoal combinations and creating remote

queries
9. assembling the rewritten query plan

We explain these steps using two running examples: a simple
select-project-join query and a query that contains a rank-aware
query operator. The former consists of two select POPs at leaf level
– both having the same join POP as parent. The root note (as parent
of the join POP) is a construct POP. The query plan together with
the corresponding subgoal trees is shown in Figure 7(b). It asks for
works of Leornardo da Vinci and their location. The second query
consists of only two levels. A select POP as leaf node and a skyline
POP as root node. The POP tree as well as the corresponding sub-
goal tree are shown in Figure 7(c). This is the representation of the
query that we introduced in Section 3.2 as an example for formu-
lating queries in text format. It asks for a set of galleries that offer
many but cheap paintings. Both queries are issued at P0 (Figure 2)
and hence are formulated in P0’s local schema.

1. Receiving a Query Plan. The input query plan – corresponding
to the original query – has already been processed locally and may
contain intermediate local results (Section 4.1). The root node of
the POP tree is assigned a set of neighbors that are to be considered
for rewriting. This set is likely to contain a lot fewer neighbors than
the peer is connected to because of data-level pruning. As rewrit-
ing costs depend on the number of used views, this information
significantly improves performance. In our example, P0 receives

www.manaraa.com

artloc/item
art/artist

artloc/item
art/gallery

-
work

title
title

gallname
location

artist
fullname

location
-

location
-

town
town

gallname
name

Join:
[art/gallery/name,
art/artist/work/location]

Join:
[art/gallery/name,
art/artist/work/location]

<artloc>
<item context="$a in art/artist,

$w in $a/work,
$g in art/gallery
where $w/location = $g/name">

<title>{ $w/title }</title>
 <artist>{ $a/fullname }</artist>
 <location>

<gallname>{ $w/location }</gallname>
<town>{ $g/town }</town>

</location>
</item>

</artloc>

(a) View from P0 to P4 (b) Join Query (c) Skyline Query

Figure 7: Building Subgoal Trees for Views and Queries

the two example queries and identifies neighbors P1, P3, and P4 to
be relevant to both queries.

2. Preprocessing. Since union POPs are not part of conjunctive
queries we need a preprocessing step if such operators are con-
tained in a query. Given a query with a union POP, the two sub-
queries underneath are given identifiers. They are rewritten and
processed independently from each other. After the peer has re-
ceived the results of both subqueries, the result of the input query
is the union of the results of the two subqueries (effectuated by a
union POP as parent of the rewritten subqueries).

Rank-aware operators are not part of conjunctive queries ei-
ther. To consider such operators for rewriting we exploit their ad-
ditivity: φ(D1, . . . , Dn) = φ(φ(D1), . . . , φ(Dn)), where φ de-
notes a rank-aware operator and D1, . . . , Dn the data sets of peers
P1, . . . , Pn. Thus, to reduce network load and computational load
at the initiator, neighbor peers receive a rewritten query that in-
cludes φ. When the initiator has received the results from its neigh-
bors, it once more evaluates φ over the union of its local result
and the results received from its neighbors. The preprocessing step
takes care that φ is evaluated over that union.

The corresponding query POP tree for our second example query
is shown in Figure 8(a) where the original skyline POP of the query
is cloned and used as root node of the rewritten query. The union
POP underneath describes that the result of the local query (left
child), i.e., the original input query, is merged with the results of
the neighbors (right child, dotted line). As this is only the prepro-
cessing step the right child of the union POP is not yet known but
computed in the following steps of this algorithm.

3. Creating Buckets. At this point we need the subgoal represen-
tation of queries. For each select POP at leaf level one subgoal and
a corresponding bucket is created (Figures 7(b) and 7(c)). Each
bucket is assigned a subgoal ID (subGoalId). Furthermore, it
knows about the total number of subgoals that have been created
for the query (subGoalCount). This additional information al-
lows for comparing queries by means of their identification instead
of comparing their operator trees.

4. Sorting View Subgoals into Buckets. For each peer contained
in the list of interesting neighbors the corresponding view subgoals
are compared to the query subgoals of the buckets. If a view sub-

goal is able to answer a query subgoal, i.e., it meets the mapping
conditions stated above, it is sorted into the corresponding bucket.
Starting at the context nodes the source names and the predicates
are compared. A query predicate that cannot be fulfilled in the
view subgoal would yield an empty answer for the rewritten query.
If source paths or names are different or missing, no mapping can
be found. Thus, such view subgoals can be dropped. Especially,
join predicates of a query have to be checked against the view sub-
goals. Since for rewriting the input query the view subgoals have
to be combined, the view has to contain either the same join predi-
cate or an exported symbol, i.e., a corresponding text node, so that
the join may be computed with another view. As in MiniCon [21]
we look at the predicates at this early stage of the rewriting process
to avoid a large-scale containment test for rewritings of views that
obviously do not yield any results.

In a subgoal tree that is inserted into a bucket all its matching
nodes are tagged. Figure 8(b) shows the result for the query subgoal
of bucket 0 (join query) and a view subgoal of P3. Additionally,
each view is assigned a list of bucket IDs that its subgoals have
been sorted into.

5. Creating Combinations of Buckets. The buckets and the
view subgoal trees sorted into them only represent parts of the
query. The view subgoals within the buckets have to be com-
bined to answer the whole query. This is done first by building the
Cartesian product between the buckets’ view subgoal trees. This
Cartesian product may be rather large and may as well contain a
lot of redundant combinations. To remove them, the bucket IDs
that have been assigned to the views are consulted. All combi-
nations that do not fulfill the following requirement are pruned:
∀x 6= y ∧ x is combined with y : Colors(x)∩Colors(y) = ∅,
where Colors(x) denotes the set of query subgoals that view x
fulfills. In case a view fulfills multiple query subgoals, it has been
given multiple bucket IDs. By checking the requirement above, the
minimal set of additional views is found for answering the whole
query. All other combinations can be pruned. This step is similarly
done in the MiniCon algorithm [21]. For the remaining combi-
nations the algorithm checks whether the predicates of combined
subgoals originating from different views are contradictory. Since
they would yield empty result sets such combinations are pruned,
too.

www.manaraa.com

(a) (b)

Figure 8: (a) Preprocessing of a Skyline Query, (b) Sorting a View Subgoal into a Bucket and Tagging Matching Elements

For our join query two buckets have been created. View subgoals
of P3 and P4 have been sorted into bucket 0, view subgoals of P1

and P4 into bucket 1. The Cartesian product results in four com-
binations, but as the view of P4 is able to answer the whole query,
all combinations of P4’s view and other views can be dropped. At
the end only the combinations (3,1) and (4,4) remain. Note that the
buckets contain view subgoals not views. Thus, the combination
(4,4) says that two subgoals that are both supported by P4 need to
be combined.

6. Creating Query Snippets. By now, it is checked whether a
view subgoal is useful for rewriting the query (step 4) and whether
a combination would possibly yield new and non-empty result sets
(step 5). In this step, the tagged view subgoal tree nodes are rewrit-
ten to answer the corresponding query subgoal, i.e., a mapping of
the query symbols has to be found. Thus, for each view subgoal
tree in a combination we create a query snippet. It is a linear POP
tree and has the following basic structure: a remote query POP as
root, a construct POP as child of the remote query POP, and a select
POP as child of the construct POP.

The snippet POP tree is created in a bottom-up fashion. Thus,
the creation starts with the select POP. Starting at the root node of
the view subgoal tree we traverse the tree downwards as long as the
nodes have only one tagged child node. We stop at that node that is
the first one to have more than just one tagged child node. The path
of the node we stopped at determines the expression of the select
POP, which may be extended by additional query predicates.

Based on that node in the view subgoal tree that corresponds
to the query context node the expression for the construct POP is
built. As the view subgoal tree contains the schema elements of
both source and target, the construct expression is built using the
source XML structure as basis and the insertion of target element
paths. Finally, the remote query POP is created providing informa-
tion about the receiver of the query, the subquery and subgoal ID,
and the number of subgoals.

Based on the tagged view subgoal of bucket 0 (join query) in
Figure 8(b), Figure 9 shows the corresponding query snippet.

Figure 9: Creating Query Snippets from Tagged Subgoal Trees

7. Optimizing Query Snippets. Query snippets up to now are
remote queries that contain selections, projections, nesting, unnest-
ing, and renaming of elements. In principle, it is already possible
to use them to assemble the final query plan as a query snippet rep-

resents a select POP on leaf-level of the original query. However,
such a strategy would result in a transformation of all data sets pro-
vided by the target peer. This data would be transformed and sent
through the network. Although the result would be correct, perfor-
mance regarding computational load at the initiator would decrease
and network traffic would increase using this strategy. Thus, in this
step query snippets are optimized by considering additional POPs
of the original query. The expression of the construct POP provides
all information for rewriting additional POPs and for pushing them
down underneath the construct POP. Thus, computational load is
shared among peers and smaller result sets reduce network load.

This is especially useful when a query contains skyline or topn
POPs. In our example skyline query the skyline POP can be pushed
down under the remote query POP such that the receiving peer can
already apply the skyline operator to its local data und thus reduce
the size of the result set. The result is shown in Figure 10 illus-
trating how the construct POP’s expression is used to rewrite the
ranking functions of the skyline POP.

Figure 10: Optimizing Query Snippets

8. Optimizing Subgoal Combinations and Creating Remote
Queries. According to the combinations that we received as result
from step 5 query snippets are combined to subqueries using the
original query as template. Take the POP tree corresponding to our
join query as example (Figure 7(b)). In step 5 we have identified
two view subgoal combinations (3,1) and (4,4) that need to be con-
sidered. Thus, a subquery is built by replacing the select POPs at
leaf level with the corresponding query snippets. Thus, we retrieve
two subqueries. The one for the combination (4,4) is shown in the
upper part of Figure 11. Each of these two subqueries contains two
remote queries.

It is possible under certain circumstances to combine those
remote queries (that would otherwise result in two independent
queries) into just one remote query. Whenever two query snip-
pets of the same neighbor are “connected” via joins in a subquery
(the connection might involve multiple joins), we reorganize the
tree such that the remote query POP can be pushed up over the join
POP. If the view definition additionally contains the same join as
the query, then the data is already stored in the joined format at the
neighbor. Thus, we can remove the join and merge the snippets into

www.manaraa.com

Figure 11: Optimizing Combinations of Subgoals and Query
Snippets

just one. This is illustrated in the lower part of Figure 11 for our
join query example and the combination (4,4).

9. Assembling the Rewritten Query Plan. In the last three steps
remote queries have been created and optimized. In this step the
query plan as the result of the rewriting process is built by combin-
ing the original query and all subqueries by means of union POPs.
Figures 12(a) and 12(b) show the resulting final query plans for our
two example queries.

6. EVALUATION
This section discusses our evaluation results that we obtained

by integrating the presented techniques into SmurfPDMS. As the
application of routing indexes is optional, we did not apply data-
level pruning in our tests and focused on schema-level pruning.

6.1 Rewriting vs. Schema Indexing
Our first test results illustrate the benefit of our techniques in

comparison to a network that does not use query rewriting. For
this purpose, we used the network of 7 Peers shown in Figure 2
– providing 42 data records. The existence of a directed mapping
between any two peers is illustrated with an arrow. If there is an
arrow from Pa to Pb, then Pa holds a mapping to Pb.

It is obvious that in such a scenario an approach that does not
consider any rewriting at all would never be able to find all re-
sult records. The reasons are heterogeneity and the impossibility to
rewrite queries. Thus, the query would have to be forwarded in its
orignal form referring to the initiator’s schema. This would only
work in a scenario where the peers’ local data originates from a
vertical and horizontal partitioning of an original data set. A sec-
ond problem with such a strategy is that it would have to flood the
network since no routing information is available.

In comparison to our techniques such a strategy would of course
be inferior. Thus, we chose to make the comparison more fair.
First, we adapted the network of Figure 2 such that XML nodes
representing the same data are named the same in all the peers’
local schemas. Second, we decided to give the strategy a little help
on doing some schema-level pruning: each peer stores a kind of
routing index that indexes schema elements. This means that a peer
has information about the existence of schema elements that can be

accessed by forwarding a query to a specific neighbor.
Thus, we have two scenarios: (1) the techniques presented in this

paper on the network of Figure 2 with mappings and (2) the non-
rewriting approach on the altered network of Figure 2 with schema
indexes. In total, we issued the 6 queries listed in Table 2 with
peer P0 as initiator. To give both test scenarios the same chances
the expressions contained in the operators only refer to XML nodes
and paths that are common for peers in both scenarios.

QueryID Query Type #Levels in
POP tree

0 Projection 1
1 Projection and Transformation 2
2 Projection and Selection 2
3 Join with Transformation 3
4 Top-N with Transformation 3
5 Skyline with Transformation 3

Table 2: Query Mix

The most important cost factor in distributed environments are
network load (data volume) and the number of messages that are
necessary to answer a query. Thus, we discuss our evaluation re-
sults using these two measures and neglect local execution costs.

Let us first consider the non-incremental variant (QS) of our dis-
tributed query processing strategy described in Section 4. With
respect to network load in terms of transferred data volume the
rewriting strategy should produce less load since in contrast to the
non-rewriting strategy only remote queries are sent to neighboring
peers instead of the whole query. With respect to the number of
messages we expect more or less the same result since both strate-
gies use additional information about the schemas of neighboring
peers.

The results of our tests are listed in Table 3 – summarizing data
volume and the number of messages for the whole query load. As
we have expected data volume is reduced using our rewriting tech-
niques. Furthermore, also the number of messages is reduced. This
is due to the fact that the rewriting strategy is able to prune more
neighbors since only those neighbors are queried that provide all
elements named within the query.

Rewriting No Rewriting Difference
Total Number
of Messages 50 68 −26, 5%
Data Volume
in kByte 133.053 241.568 −44, 9%

Table 3: Results for QS
We did the same tests using the incremental variant of our query

processing strategy (IMS, Section 4). Using IMS peers do not have
an obligation to answer a received query – using QS peers always
send answers to signal the sender that the query has been processed
and that the sender can stop waiting for answers. Thus, the differ-
ence between using rewriting or not should be less obvious than in
the tests for QS. Still, in the non-rewriting strategy more queries
should be forwarded to neighboring peers due to the reasons stated
above. But without the obligation to answer each received query
the impact of asking some additional (non-necessary) peers should
be smaller than in the QS tests. For the data volume we expect the
same tendencies as for QS.

The test results shown in Table 4 support our anticipation. The
difference between the rewriting and the non-rewriting strategy is
smaller than in Table 3. Furthermore, in comparison to QS, IMS
needs fewer messages to answer the query since there is no obli-
gation to answer queries. In addition to that, IMS delivers first

www.manaraa.com

(a) Join Query (b) Skyline Query

Figure 12: Rewritten Queries

results almost instantaneously to the user and incrementally adds
more records to the result.

Rewriting No Rewriting Difference
Total Number
of Messages 49 54 −9, 2%
Data Volume
in kByte 135.581 205.407 −34, 0%

Table 4: Results for IMS
Our first results show that the rewriting method is preferable over

a non-rewriting strategy since the knowledge contained in the map-
pings allows for a more effective schema-level pruning. Further-
more, the additional load that a peer has to deal with when rewriting
a query is negligible in comparison to the benefits. Another posi-
tive effect of using mappings is that a peer is able to query schemas
different from its own one. In comparison to that the schema index
approach can only query data originating from a partitioning of a
global database.

6.2 The Influence of the Choice of Neighbors
Query Processing in PDMS depends on the choice of neighbors,

i.e., it depends on what neighbors a peer has established mappings
to. In order to show that our techniques still work in a scenario
where a query has to be rewritten more often than just once, we
created two networks each consisting of 20 peers. The data of these
peers can be divided into four topics: galleries, artists, art objects
(paintings or sculptures) and styles.

In scenario 1 the network structure corresponds to a star with P0

having connections to all other peers. Thus, scenario 1 represents a
standard data integration system where P0 serves as mediator and
provides a common schema using LAV mappings. In scenario 2
we arranged the peers in clusters determined by a similarity mea-
sure. As measure for schema similarity we used the number of
possible schema element correspondences between the schemas of
any two peers. For each link we defined mappings in both direc-
tions, i.e., if P0 has a mapping to P1 then P1 also has a mapping
to P0. While this increases reachability of data it also increases
the number of cycles that have to be dealt with. Peers with simi-
lar data (data of the same topic) are clustered in our network, i.e.,
there are many links between such peers. Since some of the peers
store data of more than just one topic, clusters overlap. In order to

answer queries correctly that perform joins between the topics we
established additional links that interconnect clusters.

In both scenarios we issued 13 queries with at most 4 subgoals
at P0 applying QS. Two of the queries included top-N or skyline
operators. Due to the favorable choice of neighbors, results in both
scenarios should be the same although queries need to be rewritten
more than just once in scenario 2. In addition to this we expect
duplicates in the result set of scenario 2 since cycles are only de-
tected if the same rewritten query has been received at the same
peer in the same way twice. If for example a peer receives remote
queries from different peers the peer does not always realize that
both query the same data for the same original query.

Result Size
Scenario Result Size after Removing

Duplicates
(1) Data Integration 304 294

(2) PDMS 353 294

Table 5: Comparison of a Data Integration System (1) and Dis-
tributed Query Processing in PDMS (2)

Table 5 shows our results with respect to the two scenarios sum-
marizing the results for all test runs and queries. In both scenarios
all result tuples have been retrieved. Since some data records are
stored at multiple peers both scenarios retrieve a small number of
duplicates. As anticipated the second scenario retrieves more du-
plicates due to the reasons indicated above.

As our tests have shown when optimal neighbors are chosen with
respect to (i) the similarity of schemas and (ii) the combinability of
neighbor data for join operations, all the data in the system can be
accessed. Performance can still be improved by elaborating cycle
detection and influencing the network topology.

6.3 Benefits of Considering Rank-Aware Op-
erators for Rewriting

In our final tests we wanted to examine the benefits of consider-
ing high-level operators for rewriting. Since we have designed our
algorithms for the purpose of reducing costs by considering such
operators we expect the costs to be lower in comparison to a rewrit-
ing strategy that does not consider such options. For comparison we
used the implementation of our rewriting strategy in SmurfPDMS

www.manaraa.com

and bypassed all optimizations that consider rank-aware operators.
For our tests we used the PDMS network of 20 peers that we have

used in scenario 2 in Section 6.2. We chose a 3-level top-N query
(topn POP, construct POP and select POP) with N = 5, issued it
twice at the same peer – once using QS and once using IMS. In our
tests we also varied the number of records whose structure fits the
query: 20 and 300 data records distributed among all peers. The
main benefit of considering rank-aware operators is to reduce local
computation load and network traffic. Thus, the data volume should
be reduced in comparison to the strategy that does not consider
rank-aware operators. This tendency should be more obvious when
there is a higher number of relevant records to the query.

The results of our tests are shown in Figure 13. As we have
expected, in general message volume is reduced when considering
rank-aware operators for rewriting. These results also show that for
low numbers of relevant data the savings are smaller than for high
numbers.

0

50000

100000

150000

200000

250000

300000

300 Data Records20 Data Records

D
at

a
V

o
lu

m
e

in
 k

B
y
te

IMS − Cons. RA Ops
IMS − NOT Cons. RA Ops

QS − Cons. RA Ops
QS − NOT Cons. RA Ops

Figure 13: Benefits of Considering Rank-Aware Operators for
Rewriting, Data Volume

7. CONCLUSION
Although query rewriting is an important component of PDMS,

interoperability is more than just rewriting queries. For efficiency
and practicability reasons such systems require distributed query
processing strategies that try to minimize execution costs. Part and
parcel of such strategies is pruning neighbors from consideration
using information on both schema-level (mappings) and data-level
(distributed data summaries respectively routing indexes). Further
reduction of costs can be achieved by considering rank-aware query
operators and relaxation.

In this paper, we have elaborated on semantic interoperability
in distributed environments such as PDMS. We provided a holis-
tic view on all aspects that are important for query processing in
such systems and emphasized their interrelationships and depen-
dencies. For this purpose, we used SmurfPDMS as an example and
discussed techniques that we developed and conclusions that we
came to working on that project. However, as we have remarked
throughout the paper, there are still many open issues that remain
to be solved and/or improved in future work.

8. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:

building histograms without looking at data. SIGMOD Rec.,
28(2):181–192, 1999.

[2] A. Bonifati, E. Chang, A. Lakshmanan, T. Ho, and
R. Pottinger. HePToX: Marrying XML and heterogeneity in
your P2P databases. In VLDB ’05, pages 1267–1270, 2005.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE’01, pages 421–432, 2001.

[4] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In ICDCS ’02, pages 23–32, July 2002.

[5] O. Duschka and M. Genesereth. Query planning in
infomaster. In SAC ’97, pages 109–111, 1997.

[6] A. Halevy. Answering Queries using Views: A Survey. The
VLDB Journal, 10(4):270–294, 2001.

[7] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, and
I. Tatarinov. The Piazza Peer Data Management System.
TKDE, 16(7):787–798, 2004.

[8] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
Mediation in Peer Data Management Systems. In ICDE
2003, pages 505–, 2003.

[9] K. Hose, A. Job, M. Karnstedt, and K. Sattler. An Extensible,
Distributed Simulation Environment for Peer Data
Management Systems. In EDBT’06, pages 1198–1202, 2006.

[10] K. Hose, M. Karnstedt, A. Koch, K. Sattler, and D. Zinn.
Processing Rank-Aware Queries in P2P Systems. In
DBISP2P 2005, pages 238–249, 2005.

[11] K. Hose, M. Karnstedt, K. Sattler, and D. Zinn. Processing
Top-N Queries in P2P-based Web Integration Systems with
Probabilistic Guarantees. In WebDB ’05, pages 109–114,
2005.

[12] K. Hose, D. Klan, and K. Sattler. Distributed Data
Summaries for Approximate Query Processing in PDMS. In
IDEAS ’06, pages 37–44, 2006.

[13] K. Hose, C. Lemke, J. Quasebarth, and K. Sattler.
SmurfPDMS: A Platform for Query Processing in
Large-Scale PDMS. In BTW ’07, pages 621–624, 2007.

[14] K. Hose, C. Lemke, and K. Sattler. Processing Relaxed
Skylines in PDMS Using Distributed Data Summaries. In
CIKM ’06, pages 425–434, 2006.

[15] M. Karnstedt, K. Hose, E. Stehr, and K. Sattler. Adaptive
Routing Filters for Robust Query Processing in
Schema-Based P2P Systems. In IDEAS ’05, pages 223–228,
2005.

[16] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping
data in peer-to-peer systems: semantics and algorithmic
issues. In SIGMOD ’03, pages 325–336, 2003.

[17] D. Kossmann. The State of the Art in Distributed Query
Processing. ACM Computing Surveys, 32(4):422–469, 2000.

[18] M. Lenzerini. Data integration: a theoretical perspective. In
PODS ’02, pages 233–246, 2002.

[19] A. Y. Levy. Obtaining Complete Answers from Incomplete
Databases. In The VLDB Journal, pages 402–412, 1996.

[20] Y. Petrakis, G. Koloniari, and E. Pitoura. On Using
Histograms as Routing Indexes in Peer-to-Peer Systems. In
DBISP2P, pages 16–30, 2004.

[21] R. Pottinger and A. Halevy. MiniCon: A scalable algorithm
for answering queries using views. The VLDB Journal,
10(2-3):182–198, 2001.

[22] J. Quasebarth. Distributed Query Rewriting in PDMS (in
German). Master’s thesis, TU Ilmenau, 2007.

[23] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 10(4):334–350,
2001.

[24] P. Rodrı́guez-Gianolli, A. Kementsietsidis, M. Garzetti,
I. Kiringa, L. Jiang, M. Masud, R. J. Miller, and
J. Mylopoulos. Data sharing in the Hyperion peer database
system. In VLDB ’05, pages 1291–1294, 2005.

[25] A. Roth and F. Naumann. System P: Query Answering in
PDMS under Limited Resources. In IIWeb, 2006.

[26] J. D. Ullman. Information integration using logical views. In
ICDT ’97, pages 19–40, 1997.

